[2 + 4lCYCLOADDITION OF THlOPHOSGENE WITH ANTHRACENES

Hans Allgeier and Tammo Winkler Research Department, Pharmaceuticals Division, CIBA - GEIGY Limited, 4002 Basle, Switzerland

(Received in WK 21 November 1975; accepted for publication 4 December 1975)

Thiophosgene is known to react as dienophile in $[2 + 4]$ cycloadditions with reactive dienes such as cyclopentadiene $^{\mathrm{2)}}$, cyclohexadiene $^{\mathrm{2)}}$ and 1,4-diphenyl-1,3-butadiene $^{\mathrm{3)}}$. We report here the Diels-Alder addition of thiophosgene to anthracene Ω and three of its 9-substituted derivatives (9) .

When 53.4 g (0.3 moles) of anthracene (1) , 72 g (0.63 moles) of thiophosqene and 760 ml of xylene were heated at 90 $^{\circ}$ for 6 hours, the resulting mixture evaporated and the residue crystallized from ether, the bridged sulfide $\left(\mathbb{2}\right) ^{-4)}$ was obtained in 60% yield $^{5)}$, mp 133-5^o dec., δ (CDC1₃) ppm: 5.19 (1H, s), 5.28 (1H, s). (2) is stable in the absence of water but solvolyses rapidly in hydroxylic solvents. Hydrolysis of (2) with silicagel-waterdioxane at 25[°] during 48 hours afforded the thiolactone $\overline{3}$, mp 135-7[°] \rightarrow 208-15[°] (mp of anthracene) from ether-petrolether, 64% yield, \vee (CH₂C1₂): 1695 cm⁻¹ (C=O), δ (CDC1₃) ppm: 5.20 (1H, s), 5.55 (1H, s). The unsubstituted thioether \overline{A} was formed in 18% yield by reduction of (2) with lithium aluminum hydride for 1.5 hours in refluxing ether, mp 161-5^o from ether δ (CDCl₃) ppm: 2.95 (2H, d, J 3 Hz), 4.73 (1H, t, J 3 Hz), 5.05 (1H, s). Sodium metaperiodate oxidation in water-acetone at 25^o for 3 hours converted \overline{a} into the sulfoxide \overline{c} , mp (159)-209[°] (gradual decomposition) from ether, 52% yield, δ (CDCl₃) ppm: 2.30 (lH, dd, J₁) 12.5 Hz, J_2 3 Hz), 3.48 (1H, dd, J₁ 12.5 Hz, J_2 3 Hz), 4.67 (1H, t, J 3 Hz), 5.67 (1H, s). Treatment of @ during 2 hours in methylene chloride with an excess of m-chloroperbenzoic acid lead to the sulfone $\overline{6}$, mp 296-8⁰ from methanol, 72% yield, δ (DMSO-d₆): 3.04 (2H, d, J 3 Hz), 4.85 (lH, t, J 3 Hz), 5.82 (lH, s). (2) was further characterized by oxidation with m-chloroperbenzoic acid to the recently published and independently synthesized dichlorosulfoxide (7) and dichlorosulfone (8) ⁶⁾.

\mathbf{R}	reaction conditions mp, solvent of crystallisation and yield of			
$\mathbf{v} \in \mathbb{R}^n$	9.	sulfide (10)	$ \text{subforide (I)}^{9)} $ sulfone (12)	10)
CH ₂	0.104 moles $(9a)$, 0.194 moles $CSC12$, xylene, 65% 100 ml xylene, 25°, 2 hours	dec. on heating,	195-7 [°] dec., tetra- 206-8 [°] , ether- hydrofurane- petrolether, 87%	petrolether, 55%
(CH_2) 3000 CF_3 ⁷⁾	0.12 moles $(9b)$, 300 ml xylene, 50°. 17 hours	147-50 ⁰ dec. 0.24 moles $CSC12$, xylene-petrolether, hydrofurane, 81% 62%	$183-6^\circ$, tetra-	$205 - 7^{\circ}$ dec., tetra- hydrofurane- petrolether, 85%
$\begin{pmatrix} 0 & 11 \\ 4 & 1 \end{pmatrix}$	0.013 moles \circledcirc , 0.014 moles CSC1 ₂ , toluene, 73% 35 ml xylene. 90 -100° . 3 hours	$225-6^\circ$ dec.,	$215 - 220^{\circ}$, tetra- hydrofurane- petrolether, 84%	$284 - 6^{\circ}$, tetra- hydrofurane- chloroform. 43%

TABLE 1: Cycloaddition products (10) , corresponding sulfoxides (11) and sulfones (12)

TABLE 2: 1 H-nmr spectral parameters for $\widehat{(10)}$, $\widehat{(11)}$ and $\widehat{(12)}$

R	sulfide (10)	sulfoxide (11)	s ulfone (12)
CH ₂	CDCL ₃	CDC1 ₃	CDC1 ₂
	$1H$, s, 5.14 ppm	1H, s, 5.01 ppm	1H, s, 5.00 ppm
	3H, s, 2.24 ppm	$3H, s, 2.30$ ppm	3H, s, 2.34 ppm
(CH_2) 3000CF3	CDCL ₃ 1H, s, 5.15 ppm		CDCL ₃ 1H, s, 5.00 ppm
$\zeta_{\rm B}^{\rm H}$	CDCL ₃	DMSO-d ₆	$DMSO-d6$
	1H, s, 6.16 ppm	$1H, s, 5.98$ ppm	1H, s, 6.20 ppm
	(acetal-H)	(acetal-H)	(acetal-H)
	$1H$, s, 5.14 ppm	$1H, s, 5.51$ ppm	1H, s, 5.59 ppm

Cycloaddition experiments of thiophosgene with 9-substituted anthracenes $(9a)$, $(9b)$ and \circledR revealed a remarkable regiospecificity and occurred in case \circledR already at 25[°] (table 1). The cycloaddition products are assigned structure (10) with the sulfur atom attached to the tertiary carbon atom of the starting anthracenes (9) . The structural proof is based on the absence of a substantial shift of the H-C_A-proton upon transforming the primary sulfide adducts (10) into the corresponding sulfoxides (1) and sulfones (2) (table 2). Comparison of the 13 C nmr spectra (CDCl₃) of $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (C₁ 54.3, C₄ 64.7, CH₃ 15.8) and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (C₁ 68.7, C₄ 61.3, CH₃ 13.5) furnishes an independent proof of this structural assignment: The 13 C chemical shift difference between Ω and Ω amounts to 14.4 ppm for C_l (substituent effect of SO vs. S, cf.lit.¹²⁾)

and to -3.4 and -2.3 ppm for C_4 and CH_3 respectively (γ -effect of the O-atom).

Acknowledgement: We thank Miss Felicitas Widmer for skilled and eificient technical assistance. The encouragement and interest of Dr. A.R. Gagneux is gratefully acknowledged.

REFERENCES and REMARKS

- 1) a. W.J. Middleton, J. Org. Chem. 23, 1026 (1958) b. C.R. Johnson, J.E. Keiser and J.C. Sharp, ibid., 34, 860 (1969)
- 2) H.J. Reich and J.E. Trend, ibid., 38, 2637 (1973)
- 3) G. Laban and R. Mayer, Z. Chem. 7, 227 (1967)
- 4) All new compounds had analytical data consistent with the assigned structures.
- 5) All yields refer to isolated, analytically pure material.
- 6) B. Zwanenburg, L. Thijs, J.B. Broens and J. Strating, Rec. Trav. Chim. Pays-Bas, 91, 443 (1972)
- 7) Prepared by trifluoracetylation of the corresponding alcohol 8 with trifluoracetic acid anhydride in methylene chloride and triethylamine at 25°; oil, 96%.
- 8) F.H.C. Stewart, Aust. J. Chem. 13, 478 (1960)
- 9) Prepared by oxidation of the corresponding sulfide (10) with one equivalent of m-chloro-perbenzoic acid in CH_2Cl_2 at $0-25^\circ$.
- 10) Prepared by oxidation of the corresponding sulfide (10) with an excess of m -chloro-perbenzoic acid in CH₂Cl₂ at 0-25°.
- 11) G. Rio and B. Sillion, Compt. rend. 244, 623 (1957)
- 12) G.W. Buchanan, C. Reyes-Zamora and D.E. Clarke, Can. J. Chem. 52, 3895 (1974).